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is determined by the expression 

/zar = ~ ) ( k ,  k) - p~)(k, kl)] +/z~)(k, k) .  (4.9) 

Thus, the result (4.8) contains contributions to the 
anomalous coefficient of absorption from every of the 
most essential processes of X-ray interaction with mat- 
ter. This expression clearly shows that the absorption 
connected with the photo-effect and the Compton scat- 
tering have the same temperature dependence. (We 
note that the Compton scattering cross-section in the 
commonly used range of X-ray energies is as a rule, 
small compared with the photo-effect cross-section.) 
Such temperature dependence of absorption in the 
problem concerned with the anomalous transmission 
has for the first time been consistently derived by the 
present authors (Afanas'ev & Kagan, 1965) and inde- 
pendently by Ohtsuki (1964). (The situation considered 
in the paper by Afanas'ev & Kagan was equivalent to 
the case when e0 = 1). 

The second term in (4.8) has quite another depen- 
dence on the phonon spectrum and on the temperature. 

Generally speaking, this term is as a rule small com- 
pared with the first one. Nevertheless, its contribution 
to the total coefficient of absorption is rather impor- 
tant, being greater than the error with which /za is 
measured. 

For example, in the case of reflexion from the plane 
(220) in monocrystalline germanium the magnitude of 
the second term in (4.8) is approximately 470 of that 
of the first for the line Kel of copper (it = 1.5405 A). 
In a recent paper by Efimov (1968) refined measure- 
ments of the anomalous absorption coefficient tern- 

perature dependence have been carried out for this 
case. As was shown by Efimov, the account of the con- 
tribution from inelastic scattering by phonons markedly 
affects the analysis of the relevant experimental results. 

It is interesting to emphasize that the relative impor- 
tance of/ZaT sharply increases with the increase of the 
ratio between the elastic scattering cross-section and 
the cross-section of photo-absorption. This circum- 
stance provides interesting possibilities for carrying out 
experiments in which the first and the second terms 
in the anomalous absorption coefficient (4.8) are of 
the same order of magnitude. 

References 

ArANAS'EV, A. M. & KAGAN, YU. (1965). JEPT, 48, 327; 
Soviet Phys. JETP, 21, 215. 

AFANAS'EV, A. M. & KAGAN, YU. (1967). JETP, 52, 191; 
Soviet Phys. JETP, 25, 124. 

BORRMA~,rN, G. (1941). Z. Physik, 4, 157. 
BORRMANN, G. (1950). Z. Physik, 00, 127, 297. 
EnMOV, O. N. (1967). Phys. Stat. Scl. 22, 297. 
KAGAN, YU. & AFANAS'EV, A. M. (1965). JETP, 49, 

1504. 
KAGAN, YU. & AVANAS'EV, A. M. (1966). Soviet Phys. 

JETP, 22, 1032. 
LANDAU, L. D. & LIFSC~TZ, E. M. (1957). Elektrodinamika 

Sploschnykh sred (Electrodynamics of Continuous 
Media). Moscow: G.I.T.T.L. 

OrIxsuI(I, Y. H. (1964). J. Phys. Soc. Japan, 19, 2285. 
SCruFF, L.I. (1955). Quantum Mechanics, chap. XIV, 
StaIN, V. P. & RUHnDSE, A. A. (1961). Elektromagnitnye 

svoistva plazmy i plazmopodobnykh sred (Electromagnetic 
Properties of Plasma and Plasma-like Media). Moscow: 
Gosatomizdat. 

Acta Cryst. (1968). A24, 170 
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Ewald's and von Laue's dynamical theories of X-ray diffraction are discussed. Ewald derived the 
dispersion equations with a microscopic theory (classical electron theory), whereas von Laue used a 
phenomenological macroscopic approach (MaxweU's theory). As is to be expected, the dispersion 
equations of the two theories agree if one chooses the same physical model for the electromagnetic 
resonators, i.e. point dipoles or atoms. 

Introduction 

Only two years after the discovery of X-ray diffraction 
in crystals, Darwin (1914) pointed out that von Laue's 
kinematical theory (yon Laue, Friedrich & Knipping, 
1912, 1913) does not give the correct intensities at the 
interference maxima. He furthermore developed a very 
elegant, although limited, method for the understand- 

* On sabbatical leave at the Fritz-Haber-Institut der Max- 
Planck-Gesellschaft, Berlin-Dahlem, Germany. 

ing of X-ray diffraction in perfect crystals. In order to 
derive a self-consistent dynamical theory of X-ray dif- 
fraction in perfect crystals, Ewald (1917) used some 
of the results of his theoretical treatment of the dis- 
persion and double refraction of light in crystals 
(Ewald, 1916). The theory is based on the classical 
electron theory. Lohr (1924) avoided any atomic theory 
for crystals and published a dynamical theory of X-ray 
diffraction which was based on Jaumann's continuum 
theory. It is here only assumed that the crystal has an 
atomic structure. However the treatment is very com- 
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plicated and was not used for any practical purpose. 
Schlapp (1926) developed a dynamical theory for a 

linear continuous and periodic electric permittivity. 
The formulation of the dynamical theory of X-ray dif- 
fraction nowadays mostly used is due to von Laue 
(1931). He solved Maxwell's equations for a continuous 
and periodic electric susceptibility. 

Both Ewald (1937) and von Laue (von Laue & 
Wagner, 1960), have been aware of the fact that their 
final results are identical if one uses the same model 
for the crystal (i.e. whether one uses for the electro- 
magnetic resonators within the crystal electric point 
dipoles or atoms with a spatial electron-charge distri- 
bution). The difference between Ewald's and von Laue's 
formulation is that Ewald derived the dispersion equa- 
tions with a microscopic theory, whereas von Laue 
used a macroscopic and phenomenological procedure. 
The quantum-mechanical justification for yon Laue's 
approach was given by Kohler (1935). 

In order to show that the final results of Ewald's 
and von Laue's theory are the same if one chooses the 
same crystal model, we first derive the dispersion equa- 
tions for point dipoles and atoms on the basis of 
Ewald's microscopic theory and then we briefly discuss 
von Laue's theory. 

For the derivation of the dispersion equations we 
use a simplified method which corresponds to that 
given recently by Ewald (1965). For a more rigorous 
treatment, particularly concerning the summation of 
lattice potentials, we refer to the papers by Ewald 
(1916, 1917, 1921) and Born (1923). 

A formal difference between the two theories is that 
Ewald's dispersion equations are expressed in terms 
of 'vectorial structure amplitudes' (which are identical 
with the Fourier amplitudes of the vector of the elec- 
tric polarization if the resonators are atoms), whereas 
von Laue formulates these equations in terms of the 
Fourier amplitudes of the vector of the electric dis- 
placement. 

There will be no further discussion of the dispersion 
equations, since von Laue in general used Ewald's 
method here. 

Ewald ' s  treatment  

In order to calculate the radiation field of an atom or 
an oscillating electric dipole, it is convenient to use 
the wave equation in terms of Hertz's vector potential 
Z.* In Gaussian units the wave equation has the form: 

* The Hertz  vector Z is defined by the equat ions  

A =  1 Z  - d i v  Z = 1 
¢ c 

(A vector potential, ¢~ scalar potential, with E = ( -  1/c)A- ~7 ¢~) 
and fulfils the Lorentz gauge 

div A = 1 ~.  
¢ 

Wave equat ion  (1) follows f rom Maxwell 's  equations,  if one 
puts the dissipative current  term equal  to zero and  the magnetic  
permeabil i ty  equal  to one. 

1 
V2Z - -c- i- Z =  - 4 r i P .  (la) 

Here is P the vector of the electric polarization of the 
atom. The solution of (la) is given by 

Z(r)= l P(r') exp(2zt!K!r, r '!)d3r,  (2a) 
I r - r ' l  

with K =  1/2 and 2 vacuum wavelength. The integra- 
tion has to be carried out over the spatial extension 
of the atom. 

In Ewald's dynamical theory the atoms are replaced 
by point dipoles. If a point dipole of the type s and the 
electric moment p~ is situated within the crystal at the 

3 
position V/=Rl+rs  (Rz= Z" ha~, lattice vector to the 

i=1 
lth unit cell, h integers and r8 the vector from the origin 
of the unit cell to the atom of type s within the unit 
cell), then equation (la) can be written: 

1 ~ = - 4 n p ~ c i ( r - R z - r s ) .  (lb) V 2 Z -  -bq- 

Here c~(r-Rz-rs)  is Dirac's ~ function. 
The solution of (lb) is given by 

exp(2niK I r -  R~ - rsl) 
Z~(r)=p~ . . . .  [r---Rf-rs[ ..... " (2b) 

One obtains for the total radiation field at the posi- 
tion r: 

exp(2zciKlr- R t -  rsl) (3a) 
Z(r) = 27t ~s Z~ = Si Ss P~ ........ [r X-R~--rsl ....... " 

Before we discuss this expression, we formulate the 
corresponding equation for an atom. According to 
equation (2a) this is given by 

exp(2~ziKIr- r' - Rz - rsI) 
........ It-± f-±R~ =rsl . . . . . .  d3r'. (3b) 

Ewald writes for the dipole moment of an oscillator 
at the position r[" 

P[ = ps exp(2ztik0. ~)  = ps exp[2rtik0. (Rt + rs)]. (4) 

An equivalent relation then holds also for the vector 
of the electric polarization of an atom at the same 
position. If  we introduce the Fourier transform for the 
spherical wave into equation (3a), then we obtain: 

Z(r)= 1 Z' Z" Ps exp[2zrik0(Rz + rs)] 
~ l s  

I exp[2zrik. ( r -  Rt - rs)] 
. . . . .  k ~ , g -  2- . . . .  dSk,  (5a) 

and consequently for equation (3b) 

Z(r)= / X X exp(2zriko. (Rt + rs) 
7 ~ l s  

i I exp[2nik. ( r - r ' - R z - r s ) ]  ps(r)d3r,d3k (5b) 
. . . . . . .  k - 2 ± g 2  . . . . . . . . . . .  • 
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In both equations (5a) and (5b) the summation over 
l leads to the relation 

1 
27 exp[2rri(k0-k). Rt]= ,-/7-- Ja (k -k0) .  (6) 

l r a  

Va = a l .  (a2 x a3) is the volume of a unit cell. Because 
of equation (6), the integration over k space is changed 
into a summation over the reciprocal lattice and con- 
sequently one obtains for k the relation 

k = k n = k 0 + h .  (7) 
3 

h = 27 h~b~ is a reciprocal lattice vector. 
i = 1  

It follows now for (5a): 

1 exp(2nika, r) 
Z ( r ) - -~ -~a~  " k~_K2 

{ Z" ps exp(-2Jr ih ,  rs)),  (8a) 
$ 

and accordingly for (5b): 

1 exp(2nikn, r) 
Z(r)= ~rv~ h ~ ..... k ~ -  K2 { 27 exp( -  27rih. rs) 

8 

I Ps(r') exp(-21rikn, r ' )d3r ') .  (8b) 

If we now introduce the common notation for point 
dipoles and for atoms: 

1 
Ps e x p ( - 2 n i h ,  r8 (point dipoles), (9a) 

1 
Sn= ~ f exp(-2rr ih ,  rs) 

l Ps(r') exp( -  2rcikn. r ')d 3r' (atoms), (9b) 

then equations (8a) and (8b) take the simple form: 

Z(r)= 1_ s exp(2 ikk, r) 
rc h k ] _ K  2 - - Sn. (10) 

Ewald (1937) calls Sh the 'vectorial structure amplitude 
of the cell'. We see that (10) is a Fourier expansion 
of the Hertz vector Z. 

Z = 27 Zn exp(2rrikn, r ) ,  (1 1) 
h 

with 
1 Sn 

Z a =  ~- k ~ _ ~  2 . (12) 

In order to calculate the electric field vector E, we use 
the relation 

D = curl curl Z 

which connects the vector of the electric displacement 
D with the Hertz vector Z. Since for X-rays D and E 
are nearly the same, we obtain 

E ~_ D = curl curl Z = - 4rr Z kn x (kn x Sn) 
h k ~ - K  2 

exp(2rrikn, r ) .  (13) 

This is now the Fourier expansion for E. 

with 

E = Z" En exp(2zrikh, r ) ,  (14) 
h 

kh x (kh × Sn) 
En= -4zr /c~-2 K2 . (15) 

The reaction of the radiation field towards an atom 
of type s at the position rl = Rz +rs is given by* 

4np~ = ~sE(~). (16) 

Here is c~, the polarizibility for an atom of type s. 
From this, together with equation (4), it follows that: 

4zcps = ~sE(~) exp[ -  2rdk0(Rz +rs)] .  (17) 

If one introduces equation (17) into equation (9a) or 
(9b), then one obtains the following expressions for the 
structure amplitude S~. 

1 f 1 , 
-7- 27 En, ~ ~ 27exp[-27ff(h-h ). r , l ~  (18a) 
~/rh' l. Va  s J 

1 1 , 
SA = -7- 27 En" ~ 77--, 27 exp[-  2rri(h- h ) .  rs] 

t4/17 h '  I. Va s 

I ~s(r ' )exp[-  2 n i ( h - h ' ) .  r'ld3r' }. (18b) 

The coefficient in the bracket of (1 8b) is a Fourier co- 
efficient Zn-h' of the Fourier expansion of the electric 
susceptibility X. 

Z -  L'Z0 exp(-2rr ih ,  r ) ,  (19a) 
with h 

1 
X•= ~ 27 exp(-2rr ih ,  rs) 

$ 

l ~s(r') exp(-2zcih, r')d3r ' . (19b) 

In the last expression the integration over the unit cell 
is separated into a summation over the atoms at posi- 
tions rs within the unit cell and integrations over the 
atomic polarizibilities ~s. 

The coefficient in equations (18a) can be interpreted 
in the same manner, but now for point dipoles. 

If the frequency of the electromagnetic radiation field 
is large in comparison with the frequency which cor- 
responds to a K shell eigenvalue, then ~s(r) is given by 

~,(r) = -  Cz-Qs-(r) (20) 
m l w 2  • 

* Here we have to write strictly 
4rcpzS = ~sE(rzs) 

where E'(rt s) =E(r~S) - Ets(rt s) is the exciting field at the posi- 
tion rf, but Ewald (1917, 1921) showed that, particularly for 
X-rays, equation (16) is a very good approximation. In Gaus- 
sian units we have pf = ~sE(rf), 
but in order to identify von Laue's quantity Z with the electric 
susceptibility of the crystal, we have to write 

4rcptS = 0csE(ns), 
and we therefore use the notation (16). 
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Qs(r) is the electron charge distribution of the atom. 
If one introduces this equation into (19b), one obtains* 

e2Fn 
(21) 

Zn = Vazcmv z , 
with 

Fn= Z'fs exp( -2r r ih ,  r,) (22) 
$ 

the structure faetor and 

fs = l Qs(r) e x p ( -  2zcih. r)d3r (23) 

the atomic scattering factor for an atom with the 
atomic number Zs. 

For point dipoles ~s has within the above-mentioned 
approximation the form 

e2Zs 
= - • (24) o~s mv2Tg , 

and Ewald (1937) calls the Fourier coefficients corre- 
sponding to (19b) An. 

1 
An = - -  27 ~s exp [ -2z i (h  re)] 

V t ~  $ " " 

e 2 
-- £, Zs e x p ( - 2 n i h ,  rs). 

rcvZm Va s 
(25) 

The two expressions (21) and (25), together with (22), 
agree if one replaces Zs by fs and vice versa. This has 
already been pointed out by Ewald (1937). 

Ewald's structure amplitudes now take the form: 

1 ~VEn,An_n, (26a) 
Sn= ~h" 

1 27 En'zn-n' • (26b) 
4--~h' 

If  one inserts into these equations the expression (15) 
for En, then one obtains the following equations: 

kn' x (kn' × Sn') 
Sn= ~ ...... k 2 - K 2  ...... An-A' (27a) 

2-', kn' x (kn, x Sn') 
- - k ~ _ K 2  Zn-n" . (27b) 

t l  

With the notation 

kn' x (kn' x Sn') = - k~,Sh, ±kh' (28) 

one obtains finally: 

I k~,An-n, 
k ~ -  K 2 Sh' ±kh' (29a) 

Sn 
k~zn-n" 
k ~ -  K 2 Sh' ±kh'. (29b) 

Both equations (29a) and (29b) represent a system of 
linear and homogenous equations in terms of Ewald's 

* Equation (21) is identical with von Laue's equation (26.49) 
(von Laue& Wagner, 1960). 

structure amplitude Sn. The set of equations (29a) are 
Ewald's dispersion equations for point dipoles. The 
system (29b) are the generalized equations for atoms. 
The result, that for both types of resonators (dipoles 
and atoms) the structure of the dispersion equations 
is the same, can be expected and is already mentioned 
by Ewald (1937). 

If  we now want to express the equations (29) in terms 
of En, then we have to apply equation (15) to (26). 
We obtain: 

(kh2-K2)En= Z' k~An-n'Eh,,±kh (30a) 
h' 

for point dipoles and 
(k2-K2)En = 27 k2xn-h'Eh,±kh (30b) 

h' 
for atoms. In both equations we have used the notation 

kn × (kh × Eh') = --k~Eh'±kh. (31) 

Let us now briefly review von Laue's treatment (von 
Laue, 1931; von L a u e &  Wagner, 1960). 

Von Lane's treatment 

Von Laue solves the wave equation 

1 D = -4zr curl curl P (32) V Z D -  

for the interior of the crystal and assumes that the 
electric susceptibility has the periodicity of the crystal 
lattice. Then Z can be expanded in a Fourier series 
(19a) and the solutions for (32) are vector Bloch waves. 

D = 27 Dn exp(21rikh, r) (33) 
h 

and 
P = Z: Pn exp(2zcikn, r ) .  (34) 

h 
Equation (32) takes now the form 

(k~-  K2)Dn = - 4rckn x (kh x Pn) .  (35) 

In order to express these equations only in terms of 
Dn, yon Laue uses instead of the equation 

4z~P=zE,  (36) 
the approximation* 

4 r ~ P = z D .  (37) 
Together with 

4nPn= 27 Zn-h'Dn' (38) 
h' 

and the notation 

kn x (kn x Dn ' )=  -k~Dh, ±kh ,  

it follows finally that 

(39) 

(k~-K2)Dn = 27 k~zh_h,Dh,.Lkh. (40) 
h' 

These are von Laue's dispersion equations. 

* Since D=E+4nP=( I+z)E ,  it follows from (37) that 
4rcPn = 2: Zh-n'Dn" = 27 gh-n'Eh' + Z' 27 Zh-l~'Zn'-mEm + . . . .  The 

h" h' h" m 
error in (37) is therefore of the order [Xnl "" 10-5. 
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Alternatively one can express the dispersion equa- 
tions in terms of Pn. In order to do this, we multiply 
equation (35) by Xh-n', divide by ( k 2 - K  2) and sum 
over h. It follows from thus, together with equation 
(38), and after we have interchanged h with h', that 

Pn = he,, k ~ _ k 2  Ph'±kh'. (41) 

Here we have used the notation 

kn, × (kn, x Ph ' )= --k2,Ph'±k,, ' • (42) 

If one introduces 5 functions inside the integrals of 
the Fourier amplitudes 

pn = _~_~,1 1 P(r) exp( -  2hike.  r)d3r , (43) 

then the equations (41) are identical with Ewald's dis- 
persion equations (29a) for point dipoles. Otherwise 
the equations (41) are the same as Ewald's dispersion 
equations generalized for atoms. Therefore Ewald's 
structure amplitude Sh is identical with the Fourier 
amplitude Pn of the vector of the electric polarization, 
if one chooses the same physical model. This follows 
as well from a comparison between equations (26b) and 
(38). One has of course to replace Dn by En in (38). In 
order to come back to the equations (30b), one has 
now to replace in (40) the Fourier amplitudes D~ by 
En. These interchanges of E and D occur because 
the two authors use different approximations, Ewald 
the approximation (13) and yon Laue the approxima- 
tion (37). It seems to better to express yon Laue's 
dispersion equations in terms of Dn, since 

k n . D n = 0 ,  but kn.  E n # 0 .  (44) 

The equations (44) follow from the relations 

div D =0  and div E = 4nQ. (45) 

Discussion 

We have seen that Ewald's microscopic theory leads 
for the interior of the crystal to the same result as yon 
Laue's theory if one chooses the same model for the 
resonators. This holds as long as one neglects possible 
overlapping of the electron charges of adjacent atoms 
and, in the case of absorption, the Kronig fine struc- 
ture of the absorption edges. Von Laue neglected such 
effects in his original paper as well, but absorption can 
be introduced into Ewald's theory as easily (complex 
atomic polarizibility) as in von Laue's theory (com- 
plex susceptibility) (Kohler, 1933). Moli~re (1939) gen- 
eralized von Laue's treatment for the case where the 
Kronig fine structure of the absorption edge becomes 
important. 

For the half crystal von Laue's theory leads to the 
boundary conditions of Maxwell's theory. Ewald has 
shown that in his theory one obtains for the half crys- 
tal two different fields Era and Ee. Era is called the 
'mesofield', which is identical with the one obtained 
for the infinite crystal. The second field. Ee, is called 
the 'epifield'. It travels with vacuum velocity through 
the crystal. The existence of the epifield contradicts the 
self-consistency of the fields within the crystal. But it 
can be expressed so that it is cancelled by the incident 
vacuum wave and we are therefore left, within the cry- 
stal, with the mesofield only. This leads to the same 
relations for the amplitudes and wave vectors as in 
von Laue's theory. Apart from his other publications 
Ewald (1925) discussed the boundary conditions in 
his paper about the 'reflexion and refraction of light 
as a problem of electron theory' and at the Kyoto 
Conference (Ewald, 1962). 

The author wishes to express his gratitude to Profes- 
sor P.P. Ewald for sending his Sydney lecture notes 
about X-ray diffraction (Ewald, 1965) and for stim- 
ulating discussions. He would also like to thank Dr 
K. Kambe (Fritz-Haber-lnstitut, Berlin-Dahlem) for 
reading the manuscript and some stimulating remarks. 
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